Reader GP20 Data Sheet Rev 1.43

The GP20 is a very high performance proximity reader featuring long range and small dimensions. The unit will run from any voltage from 5 to 13.5vdc. The GP20 features high read range at voltages as low as 5 volts making it ideally suited to a wide variety of applications, particularly access control.

Power Requirements	5-13.5 volt regulated DC. at 65 mA typical with a 12v supply. A linear regulator is recommended.
Interface	Wiegand, Magstripe, 9.6K Baud Serial ASCII (RS232) or special to customer specifications.
Typical Maximum Read	Range 22cm at 13.5v and 13 cm at 5v with ISO card
in ideal conditions	
Frequency	125KHz standard or 134.2KHz to special order.
Transponder	Read Only.
Audio/Visual Indication	Internal LED and Buzzer
Dimensions	7.8 x 4.3 x 1.5 cm
Temperature Range	-10 to 60 Deg C.
Interface Cable	90cm.

Output Assignment

Red	Power 5 - 13.5 Volt
Black	Power 0 Volt
White	Clock Output (Magstripe, Wiegand1) 4K7 pull up
Green	Data Output (RS232, Magstripe & Wiegand0) 4K7 pull up
Orange	Card Present Output 4K7 pull up
Yellow	Program Input 4K7 pull up
Blue	NC
Brown	NC

Output Format

The output format can be customer programmed. The available formats are Wiegand, Magnetic Emulation, Clock Data and Serial ASCII (RS232)

Wieg	gand		Magst	ripe
Red	Power+V		Red	Power+V
Black	Ground Ov		Black	Ground 0v
White	Data1		Green	Data
Green I	Data0	White		Clock(Strobe)
Yellow	connect to White (Data	a0, Clock output)	Orange	Card Present
			Yellow	Connect to Orange

Serial ASCII (RS232)

Red	Power+V
Black	Ground 0v
Green	Tx Data
Yellow	No connection

Data Structure (Serial ASCII)

Baud Rate: 9600, N, 8,1

STX(02 HEX) DATA CR LF ETX (03 HEX)

The start character is factory defined as an 'STX' (02 HEX). The CR\LF characters serve to bring the received screen text back to the left hand side and on the line below after the data bytes have been sent. The 'ETX ' (03 HEX) character denotes the end of the current transmission.

Data Structure (Magstripe emulation, ABA Track 2)

Speed : Simulated to 40 IPS (Inch per second)

10 LEADING ZEROS S	S	DATA	ES	LRC 10	TRAILING ZEROS

The leading zeros prepare the receiving unit to accept the data. SS is the Start Sentinel consisting of 11010. ES is the End Sentinel consisting of 11111. LRC is the Longitudinal Redundancy Check character. Lastly there follows trailing zeros.

PROGRAMMING THE OUTPUT FORMAT

The programming input may be connected in the following ways to choose between the available output formats.

1) Serial ASCII	Leave Program Input Open Circuit
2) Wiegand	Connect Program Input to Clock Output
3) Clock Data**	Connect Program Input to Data Output
4) Magnetic Emulation	Connect Program Input to Card Present
5) Customer Interface **	Connect to Zero Volts

**(to special order only)